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Radial Vibrations of Thick-Walled
Orthotropic Cylinders

I. MlRSKY*
Rocketdyne Division, North American Aviation Inc.,

Canoga Park, Calif.

IN the design of modern missiles and space vehicles, in-
creasing use is being made of the newer materials, such as

reinforced plastics, whisker materials, and fiber-reinforced
metals. These materials are essentially elastically ortho-
tropic ; that is, the Young's modulus of elasticity and Poisson's
ratio differ in the three mutually perpendicular direc-
tions. Approximate formulas are developed here for the
natural wavelengths associated with free radial vibrations of
a thick- walled, infinitely long, orthotropic cylinder. The
method has been employed previously by McFadden1 for
the case of isotropic cylinders.

For purely radial vibrations, the particle displacement
u(r,t) is governed by the equation

(1)
where r is the radial coordinate, t the time, and

Cu = rjEr(l — vQ2vzQ)

r ~ VzrVTQVQz (2)1/TfJ = 1 — VQrVre — VrzVzr ~

Note that, as opposed to the two elastic constants E and
v for an isotropic material, nine elastic constants Er, Ee, Vrg,
etc., are required to describe the behavior of an orthotropic
material.

If one assumes u(r,t) in the form

u(r,t) = U(r
then U(r) satisfies the equation

r^U/dr*) + r(dU/dr) +

where

(3)

- n*)U = 0 (4)

k = o)/Cc is a wave number
co = angular frequency
Cc = (CU/P) 1/2 is the phase velocity of compressional waves
n2 = c22/cn

Equation (4) is the familiar Bessel's equation of order n
and argument kr. The general solution is

U(r) = AJn(kr) + BYn (kr)

where A and B are constants of integration.

(5)
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For free motions, the radial stress <rrr vanishes on the inner
and outer surfaces r = a,b, respectively. Hence the boundary
conditions in terms of the displacement are

cu(dU/dr) + Ci2(U/r) = 0 on r = a,b (6)

where

These boundary conditions result in the frequency equation
given by
ka Jn-i(ka) — ft Jn(ka) ka Yn-i(ka) — ft Yn(ka) _ n (^
kbJn-i(kb)'- ftJn(kV) kb Yn-i(kb) - ft Yn(kb) ~ u u;

with ft = n — Cn/Cu.

Solution of Frequency Equation for Extensional Mode
Consider first the extensional mode. The frequency equa-

tion may be written as

F(ka) = F(kb)
where

F(x) = - j8 Y,(x)

(8)

(9)

This function F(x) is zero at x = 0 and increases with x until
a maximum is reached at x = XQ given by

Xo = (n - 0)2] 1/2 (10)

From here, the function decreases with x approaching — <»
and then begins at + «> and decreases, etc. The function
F(x) may be developed now in a Taylor series about the
point #o to yield the following expansion :

F(x) = 1! 2!

(11)
If one employs this expansion in the frequency equation [Eq.
(8) ] and writes

6 = ka = a8 8* (12)
S=Q

the constants as are obtained by solving successively equa-
tions of higher order in 5, and the resulting wavelength X =
2ir/kis
X =

where

(6/2)

(13)

m = f -

The approximate expression (13) for X may be identified
with the mth-order mean radius and written as

* + 0(54) (14)

2(1 -
Note that for an isotropic material

n = i ft = (1 - 2?)/(l - ?) 3(1-,)

and the result reduces to that developed by McFadden.

Thickness Modes
Consider now the thickness modes of a hollow orthotropic

cylinder. The Bessel functions in Eq. (7) may be replaced
by their asymptotic expansions with the result

tanfc(& - a) - (6 - a) [8/5 + 4(n - I)2 - l]/(8kab) (15)
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Writing h = b — a, an approximate solution to this equa-
tion is

kh ~g? + (h*/8qirab) [8/3 + 4(n - I)2 - 1]
g = 1,2,3, . . . (16)

For an infinite plate of thickness h, a,b —> oo and kh = qir,
q = 1,2,3 . . ., which would be the plane-wave solution for an
orthotropic plate.

The forementioned approximate formulas (14) and (16)
have been checked by comparisons with the exact solutions,
and the results are found to be accurate within 5% for values
of d up to \.

An Error Analysis in the
Digital Computation of the
Autocorrelation Function

HENRY L. CROWSON*
IBM Space Systems Center, Bethesda, Md.

Introduction

LET /i(0 be a function of time which is defined and con-
tinuous and satisfies all hypotheses of the ergodic

theorem4 on — » ' < < < + °° . Choose a finite record, say
— T ^ t ^ + T, and let fi(t)" satisfy the quasi-ergodic
hypothesis3 on — T to -\-T. The purpose of this paper is to
deduce a relationship between error e and maximum time lag
rm in the digital computation of the autocorrelation function
of/i(0 over —T^t^T. It thus will be demonstrated that
the maximum time lag rm should not exceed 5 to 10% of the
total time record, as suggested by Blackman and Tukey.1
Details of the analysis that follows can be found in Ref. 2.

Analysis of the Problem

The unnormalized autocorrelation function of fi(t) can be
defined by the equation

An(r) lim - (1)

where r is the time lag.
If only a finite record is available, then AH (T) is approxi-

mated by

(2)

- r) (3)

A typical graph of F(t) is shown in Fig. 2.
To approximate digitally An (T) from Eq. (2), divide the

interval — T ^ t ^ T — T into K — m equispaced intervals,
where m is a positive integer such that

A typical graph of jfiOO and/i(£ + r) is shown in Fig. 1.
Define the integrand of Eq. (2) as

F(t) =

T = m(2T/K) (4)

Also note that each of the equispaced subintervals in Fig. 2 is
of length

2T/(K - m) 0 ^ m < K (5)
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Fig. 1 Graph of/i(t) arid/i(t -f r)

F(t)

/
-T

Fig. 2 Graph of/i(t)/i(t + r)

Without loss of generality, define

m = [KB] o ^ e < i (6)
where [K6] means the greatest integer in K B.

The area A* under • F(t) over tt ^ t ^ ti+i can be described
by the inequality

Rearranging inequality (7) slightly and summing over — T
^ t ^ T - r gives

K-m-l
0 ^ E [At-

In inequality (8), let
K-m-l

K-m-l
(8)

- F(tQ)]

Then

S = F(tK-m) ~ (9)

Substitute Eqs. (5) and (9) into inequality (8), and then in-
troduce the factor I/IT to get the following inequality:

0
J_

2T
K-m-l

(10)

where F(t0) = F(-T) from Fig. 2.
Application of the fundamental theorem of integral calculus

to Eq. (10) will yield an integral expression for AH(T) on
— T^t^T — r. A measure of the error in the approxima-
tion of AH(T) is given by inequality (10). Thus

- m)}\ (11)

Let c be the maximum value of [F(tK-m) — F( — T)]\ for
all 0 ^ m < K, and then

e ^ c/(K - m) (12)

From Eq. (4)
e(r) $c/[K(l -T/2T)} (13)

Inequality (13) defines an error region as shown in Fig. 3.


