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Radial Vibrations of Thick-Walled
Orthotropic Cylinders

I. Mirsky*
Rocketdyne Division, North American Aviation Ine.,
Canoga Park, Calif.

N the design of modern missiles and space vehicles, in-

creasing use is being made of the newer materials, such as
reinforced plastics, whisker materials, and fiber-reinforced
metals. These materials are essentially elastically ortho-
tropic; thatis, the Young’s modulus of elasticity and Poisson’s
ratio differ in the three mutually perpendicular direc-
tions. Approximate formulas are developed here for the
natural wavelengths associated with free radial vibrations of
a thick-walled, infinitely long, orthotropic cylinder. The
method has been employed previously by McFadden! for
the case of isotropie cylinders.

For purely radial vibrations, the particle displacement
u(r,t) is governed by the equation

e (0%u/0r?) -+ (eu/r)(Qu/dr) — cu(u/r?) = p(0%/0t%) (1)
where r is the radial coordinate, ¢ the time, and

cu = NEA1l — vgvsp)

ez = nEy(1 — v.vrs)
Vig¥gs — VeVogVer — Virgbge  (2)

1/9 =1 — vty — vravr —

Note that, as opposed to the two elastic constants £ and
v for an isotropic material, nine elastic constants E., E,, v.,
ete., are required to describe the behavior of an orthotropic
material.

If one assumes u(7,t) in the form

w(r,t) = U(r)eet 3)
then U(r) satisfies the equation
rd(d2U/dr?) + r(dU/dr)y + (k2 — 22U = 0 4)

where
E = w/C,is a wave number
w = angular frequency
C. = (cu/p)"Y*is the phase velocity of compressional waves
n* = cp/en

Equation (4) is the familiar Bessel’s equation of order n
and argument kr. The general solution is

Ulr) = AJ.(kr) + BY, (kr) (5)

where A and B are constants of integration.
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For free motions, the radial stress o, vanishes on the inner
and outer surfacesr = a,b, respectively. Hence the boundary
conditions in terms of the displacement are

en(@U/dr) + ci(U/r) = 0 on r = ab 6)
where
Cig = 77E0(Vra + Vrz”za)

These boundary conditions result in the frequency equation
given by

ha Joa(ha) — B Tu(ka) ko Voos(ka) — B Vulka)| _ o oy
B Jo1(kb) — B Ju(kb) Kb Yo o(kb) — B Y.(kb)

Wlth ﬂ =n — 012/611.
Solution of Frequency Equation for Extensional Mode

Consider first the extensional mode. The frequency equa-
tion may be written as

F(ka) = F(kb) 8
where

z J1(z) — B J.(2)
X Yn—l(x) - ﬁ Y"(.’I/')

F(z) = 9

This function F(x) is zero at z = 0 and increases with 2 until
a maximum is reached at * = xq given by

zo =[n* — (n — B2 (10)
From here, the function decreases with z approaching — =
and then begins at + « and decreases, etc. The function

F(z) may be developed now in a Taylor series about the
point x, to yield the following expansion:

xo)
!

F@) = Fa) + C= 0 pay + BT ey 1

(11)

If one employs this expansion in the frequency equation [Eq.
(8)] and writes

ka = x Z a, 0° (12)
5=0

b= a(l 4 8)

the constants a, are obtained by solving successively equa-
tions of higher order in 8, and the resulting wavelength A =
27 /kis

A = (2ma/zo)[1 + (8/2) + (F(m — 1)6* —
(o) (m — 1)3* 4 0(6%] (13)
where
m=3—@Fn-H

The approximate expression (13) for A may be identified
with the mth-order mean radius and written as

N o (2m/x0) [(am + bm) /2] + 0(8%) (14)
Note that for an isotropic material

201 — %)
31—

and the result reduces to that developed by McFadden.

CB=Q1=w)/0 -

n=1

Thickness Modes

Consider now the thickness modes of a hollow orthotropic
cylinder. The Bessel functions in Eq. (7) may be replaced
by their asymptotic expansions with the result

tank(® — a) ~ (b — @)[88 + 4(n — 1)2 — 11/(8kab)  (15)
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“Writing b = b — @, an gpproximate solution to this equa-
tion is ;

kh ~ qr -+ (h?/Sqmab)[88 + 4(n — 1)2 — 1]

g=123 ... (16)
For an infinite plate of thickness 4, a,b = « and k% = ¢,
g = 1,2,3 ..., which would be the plane-wave solution for an

orthotropic plate.

The forementioned approximate formulas (14) and (16)
have been checked by comparisons with the exact solutions,
and the results are found to be accurate within 5%, for values
of 6 up to L. :

An Error Analysis in the
Digital Computation of the
Autocorrelation Function

Hexry L. CRowson*
IBM Space Systems Center, Bethesda, Md.

Introduction

ET fi(t) be a function of time which is defined and con-

tinuous and satisfies all hypotheses of the ergodic
theorem® on — o < ¢ < 4+ . ..Choose a finite record, say
— T £t £+ T, and let fi(f) satisfy the quasi-ergodic
hypothesis® on —7 to 47. The purpose of this paper is to
deduce a relationship between error € and maximum time lag
T, in the digital computation of the autocorrelation function
of fi(t) over —T < ¢t < T. Tt thus will be demonstrated that
the maximum time lag 7, should not exceed 5 to 10% of the
total time record, as suggested by Blackman and Tukey.!
Details of the analysis that follows can be found in Ref. 2.

Analysis of the Problem

The unnormalized autocorrelation function of fi(f) can be
defined by the equation

ECER T EACEACRE A

where 7 is the time lag.
If only a finite record is available, then Ay (7) is approxi-
mated by

v = o [T R ORCED )

A typical graph of f1(f) and fi(t -+ 7) is shown in Fig. 1.
Define the integrand of Eq. (2) as

F@t) = filt) fit + 7) ®3)

A typical graph of F(f) is shown in Fig. 2,

To approximate digitally 4y; (7) from Eq. (2), divide the
interval — T <t < T — 7into K — m equispaced intervals,
where m is a positive integer such that

r = m2T/K) (4)

Also note that each of the equispaced subintervals in Fig. 2 is
of length ‘ ‘

At=2T/(K—m) " 0<m<K (5
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Fig. 2 Graph of fi(¢) fi(t + 1)

Without loss of generality, define

m = [K0] 0<£o<1 (6)

where [K 8] means the greatest integer in K 6.
The area A; under F(t) over {; <t < t;11 can be described
by the inequality

Ft) At < Ay < Fln) At ™

Rearranging inequality (7) slightly and summing over — T
<t €T — 7gives

K—m—1
0 < [A; — F(t) At} <
i=0
K—m—1
Z:O [Fti) — F(t)] AL (8)

In inequality (8), let

K—m—1
S = Z:O [Fti) — F(t)]
= [F(t) — Ft)] + [F(t;) — F(tp] + ...+
[Fltx—ma) — Fltx-m-2)] +
[Ftgem) — Fltg_m-1)]
Then

8 = Fltxk—m) — F(t) )

Substitute Eqgs. (5) and (9) into inequality (8), and then in-
troduce the factor 1/27 to get the following inequality:

0 < L3V 1L - P s
< 5m i i) At] <
2T <o

Pt = FD) (1) a0

where F(t,) = F(—T) from Fig. 2.

Application of the fundamental theorem of integral calculus
to Eq. (10) will yield an integral expression for Ay (7) on
—~T <t < T— 7. Ameasure of the error in the approxima-
tion of Ay () is given by inequality (10). Thus

e = [[Fltx—n) — F(=D)11/(K — m)]| 11

Let ¢ be the maximum value of | [F(tx—n) — F(—T)1] for
all 0 < m < K, and then

e <c/(K—m) (12)
From Eq. (4)
e (r) < ¢/[KQ — 7/27)] (13)

Inequality (13) defines an error region as shown in Fig. 3.



